
Creating a software product
2014-01-22 – acaldmail@gmail.com

Creating software product

– Gathering requirements and writing a specification
• Product description
• Use-case
• Deployment and maintenance scenarios

– Creating the project
– Setup of the design team based on

• Competence
• Expertise
• Attitudes

– Resolving other organizational aspects
• Logistics
• Formal and legal issues

From requirements to design

• The requirements analysis produces
– A proposal draft to discuss with the client, that

produces, at the end of one or more iterations:
• Estimation of resources to be allocated and the skills required

• Estimation of effort and time

• Acceptance criteria and test planning

• Criteria for versioning and deployment

• Criteria for managing the maintenance and support

• User and project documentation

The project includes the design of ...

• Components and iterations with the target
system (HW and SW)

• Type of UI and other user’s iterations

• Monitoring / logging / debugging

• Security / Resilience

• Upgradability / Scalability

• Dependencies on third-party libraries (including
the licensing)

• Delivery, versioning and software license

Tools

The tools needed are identified during the
analysis phase include

• Hardware devices

• Software applications such as languages,
libraries, development tools, simulators, etc.

• Backup and versioning software

• Communication systems (HTTP server, Email
server, remote control, chatting, VoIP, etc.)

Creation of development
team

Definition of roles and responsibilities in the team must be
made on the basis of aptitude and skill.
• Motivation

– The success of a project and its quality are the result of the joint
effort and commitment of motivated people

• Rules and definition of WoW
– They also serve to define choices and methods in order to make

more uniform and simple exchange of information

• Communication and sharing of knowledge
– The communication must be clear and based on the respect of

the people even before the roles.
– The sharing of knowledge is essential to have a vision of the

goals to achieve

Before starting the project

The team and the project manager collaborate to
• Plan of further phases of analysis and design, including

also
– Prototyping
– Definition of the user and project documentation
– Acquisition of skills

• Schedule of activities
– Plan details shared and viable
– Schedule of testing and demo to the customer
– Definition of acceptance criteria
– HW and SW resources allocation
– Resolution of the issues related to non-technical aspects

It begins with the design of macro
blocks of the "software project"

The information necessary to identify
the macro blocks of the product comes
from the requirements.
The system can be decomposed in
different views/layers, including:

• Drivers, Programs, Services
• IPC and networking services
• (G) UI
• Middleware, 3PP Libraries, modules

and tools
• Iterations and usage scenarios
• The delivery and upgrade scenarios
• Debugging and monitoring methods

The choice of languages ​​and
development tools

• The choice of the software factory depends on many factors,
among the most important we note:
– HW / SW target (portability on different O/S)
– Type of component to implement (user space application, services,

drivers in kernel space, firmware, UI, GUI, etc ...)
– Resiliency features and security requirements
– Modularity, interoperability and scalability
– Performance and realtimeness
– Availability of libraries, tools, and third-party modules
– Availability tools such as compilers, profilers, debuggers and IDEs
– Expertise and experience of team members
– HW tools availability
– Availability of the documentation and support
– Licenses and costs

Startup and shutdown of components

It is necessary to determine how the various modules
are instantiated and any dependencies on system
components:

– A complex software that requires more modules
(processes, drivers, etc.) usually endows a program
supervisor who is responsible for
• Instantiate components in the right order

• Verify its execution and take action if an abnormality
occurs

• Support the upgrade and redundancy if required

• Implement graceful termination of the components in the
event of a shutdown request

Designing the interaction
between processes

• In other words an IPC mechanism
– Complex projects need to define and implement a

communication mechanism

– It usually has desirable qualities, such as:
• Capability to encode information ensuring the

independence from the HW architecture

• Working also across a network

• Based on standard protocols

• Respecting of requirements of performance and resilience

• Debug-able using standard tools (such as protocol
analyzers)

Defining the iterations with O/S, 3PP
libraries and modules

– The use of one or more layers of decoupling
(middleware, adapters, proxy / stub, etc.)

– The use of facilities or 3PP libraries also defining
the criteria for linking static or dynamic

• Any iterations with complex systems such as
for example

– DBMS

– Graphics subsystems

– Firewall, networking, etc.

Identification of all the components to
include

• Drivers and modules in kernel space
• Services (user processes that do not interact

directly with the UI)
• Running applications and utilities
• Libraries (static and dynamic)
• User Interfaces:

– CLI for monitoring and debugging
– GUI
– Based on communication interface

• Logger (to track the behavior of various modules)

Component design

• The design depends on the type of component,
but in general it can be summarized in terms of
– Context (or threads) of execution
– Synchronization mechanisms
– Iteration with other system component
– Public or private programming interfaces
– Definition of data structures (entities and

relationships, class-diagram)
– Use-case and BUT applicable to the component or

parts of it
– Simulation, debugging and tracing
– Configuration

Component implementation

• This phase is closely related to the type of
component, but a good implementation generally
has some common characteristics:
– is documented and written in a clear and legible way
– is modular and testable through BUT or other

simulation mechanisms
– Respects coding style defined for the project
– Respects the interfaces agreed in the design
– is geared toward choices that enable compliance with

the requirements of performance and resiliency
required

– is versioned in a manner consistent

Testing software

The test is divided into:
• Basic Unit Test

– Made in the development phase and to ensure non
regression due to changes: sub-parts not further
decomposable are tested (eg., the implementation of a
particular function or class)

• Testing the isolated system
– Similar to the BUT but done on all the component through

an appropriate interface

• Testing of the complete system, including
– Validation tests
– Automatic regression tests

Deployment

• The software must be distributed to be easily
installed:

– Must be distributed in a format that allows the
user to install in a practical and safe way

– Upgrade or uninstall process should be designed
and implemented

• Advanced tools for creating installation packages for
desktop systems could be used

Support

• Support services attempt to help the
user solve specific problems

– May be delivered by email or on a website
or a tool where users can log a
call/incident

• Bug-fixing support could be provided
via upgrade packages delivered on a
website

